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The thermal boundary layer near a heated vertical plate in a poorly conducting 
liquid is subject to a horizontal d.c. electric field. If the electric field is strong 
enough, the boundary layer becomes unstable. In  this paper a theory is developed 
to predict the onset of this instability. Experiments measuring the threshold 
voltage for instability are compared with the theoretical predictions. Other 
experiments are reported which determine the effect of this instability on the heat 
transferred from the heated plate. 

1. Introduction 
Heating a vertical plate immersed in a fluid produces a thermal boundary layer 

near the plate. This boundary layer may be made unstable by the application of a 
d.c. electric field perpendicular to the plate. This configuration, which is to be 
studied in this paper, is shown in figure 1. The other electrode is parallel to the 
heated plate and outside the boundary layer. The action of the electric field is as 
follows: the electrical conductivity of the fluid is a function of temperature and 
thus heating the plate causes gradients in conductivity; free charge accumulates 
because of the electric field and the conductivity gradients; finally, electrical 
forces resulting from the action of the electric field on the free charge produce the 
instability of the boundary layer. 

Free convection from a heated vertical plate in ordinary hydrodynamics has 
received much attention. Ede (1967) presents a review of this subject. Investi- 
gations of increased heat transfer in electric fields have been principally concerned 
with measurements of heat transfer bet,ween horizontal cylinders as a function of 
voltage. Bibliographies of work in this area are contained in Baboi et al. (1965) and 
Turnbull (1969). Kronig & Schwarz (1949) used similarity theory to explain the 
measurements of increased heat transfer. An approximate solution of the free 
convection between a horizontal wire and a concentric cylinder with a radial 
electric field was found by Lykoudis & Yu (1963) by extending Langmuir’s 
conduction model for fine wires. Grosu & Bologa (1968) developed similarity 
criteria for heat transfer in electric fields. The effect of a d.c. electric field on a 
stable thermal boundary layer was considered by Turnbull (1969), who showed 
that the field increases the velocity and decreases the boundary-layer thickness 
with the effect being larger near the lower edge of the heated plate. Other related 
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work in electrohydrodynamics includes the instability of a fluid heated from 
above with a vertical d.c. electric field (TurnbulI 1968a) and the instability of a 
horizontal fluid surface under the influence of a d.c. field (Melcher 1961). 

The organization of this paper is as follows: $ 2  contains a description of the 
form of the instability; 9 3 gives a theoretical predictionof the voltage for incipience 
of instability; $4 has the results of experimental measurements of the voltage for 
incipience using visual detection of the instability; and $ 5  contains the results of 
measurements of theincreased heat transfer due to the boundary-layerinstability. 

Vertical plate 
temperature TI 

Fluid with properties 
/ 1 ,  p, K ,  u ,  E 

Y 

FIGURE 1. Configuration being studied. A heated vertical plate at  temperature T ,  is in a 
liquid at  temperature To < TI. There is a thermal boundary layer near the plate and a 
horizontal electric field is applied to the liquid. 

2. Description of the instability 
Figure 2 (plate 1)  contains photographs illustrating various stages of the 

instability. The pictures were taken using a parallel light source set so that the 
light travelled horizontally parallel to the heat plate. The camera then captured 
the resulting diffraction pattern. A mask is used so that only light passing through 
the boundary layer reaches the camera. Figure 2 (a)  is the picture for zero voltage 
and shows no perturbation since the boundary layer is stable in the absence of an 
electric field. 

At a low voltage, the picture is the same as for no voltage. As the voltage is 
raised past a threshold, the first manifestation of the instability appears. This 
instability appears as perturbations in the boundary layer, which move upward 
with the fluid velocity. The diffraction pattern for the incipient instability is 
shown in figure 2(b) .  As the voltage is again raised, the instabilities become 
larger until the boundary layer is destroyed and cells form between the electrodes. 
The unstable boundary layer is shown in figure 2 (c).  The instability now has such 
a large growth rate that it destroys the boundary layer before the fluid motion 
can sweep it out of the system. Finally, for still higher valtages, the entire fluid 
becomes turbulent, as shown in figure 2 (d ) .  
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3. Prediction of the incipience of instability 
In this section, an approximate analysis will be developed which permits a 

prediction of the voltage for incipience of instability in the boundary layer. The 
configuration is that of figure 1 with a vertical velocity in the boundary layer near 
the heated plate and a horizontal electric field. The other electrode which is 
parallel to the heated plate and outside the boundary layer is not shown in the 
figure. The fluid is assumed to be slightly conducting and to obey Ohm’s law. 
Since the electrical conductivity of slightly conducting liquids is a function of 
temperature, there are gradients in conductivity in the boundary layer. When an 
electric field is applied, free charge results, producing a force equal to the charge 
density times the electric field. The effect of this force is similar to the effect of the 
gravitational force in the BBnard problem. The BBnard problem consists of a 
stationary horizontal fluid layer heated from below, thus making the fluid lighter 
on the bottom. When the temperature gradient exceeds a critical value, the 
gravitational forces cause the fluid to become unstable and convection results. 

The gravitational force in this problem is perpendicular to the electrical force 
and is balanced by the viscous force resulting from the velocity in the boundary 
layer. Since both the gravitational force and the velocity in the boundary layer 
are perpendicular to the electrical forces and since the boundary layer is stable 
when the voltage is zero, it will be assumed that the instability is caused purely by 
electrical forces and that gravity and the equilibrium velocity have no effect on 
the threshold for instability. The velocity has an effect once an instability forms. 
This effect is to carry the instability upward and out of the system. 

In addition to the assumptions previously discussed, the fluid is assumed to be 
incompressible and the variation in boundary-layer thickness with height is 
neglected. The current in the fluid is assumed to obey Ohm’s law with the con- 
ductivity a function of temperature. Although not always valid for poorly 
conducting liquids, Ohm’s law has been used successfully to predict motions in a 
class of liquids (Melcher & Firebaugh 1967; Turnbull 19683). The model to be 
tested for stability is then a stationary liquid with a temperature gradient in a 
thin region next to a plate. An electric field perpendicular to the plate provides the 
only body force on the liquid. For this approximate analysis the only fluid 
property whose variation with temperature is considered is the electrical con- 
ductivity. The mechanical equations are then 

D v  
Dt p- = -Vp+pV2V+qE, 

(2) v.v = 0,  

where p is the mass density, DIDt = slat + (v.  V) is the convective derivative, 
v is the perturbation velocity, p the pressure, /.c the viscosity, q the charge density 
and E the electric field. 

In a poorly conducting liquid, the currents are small and, therefore, magnetic 
fields are negligible giving as the electric equations 

q = V. (GE), (3) 



234 R. J .  Turnbull 

V x E = O ,  (4) 

% + V .  J = 0, 
at ( 5 )  

J = ~TEx(/v,  (6) 

where E is the dielectric constant, J the current density, and IT the electrical 
conductivity. Of the electrical properties of the fluid, conductivity and per- 
mittivity, the conductivity is a much stronger function of temperature in slightly 
conducting liquids. In the steady state with no convection, (5) and (6) yield 

V . E  = -E.VCT/~T. 

q = E. VE - ( E / ~ ) E .  VIT. 
This gives, with (3), 

The ratio of the two terms in (8) is (E. Vs/e)/(E. VIT/IT), which has a magnitude 
much less than one. Therefore, the gradients in dielectric constant have a 
negligible effect on the charge and electric field distribution. The ratio of the 
force due to the gradient in dielectric constant to the free charge force is 

(9) 
- +E . EVe 

q E  
BE. EVE 

E(+) (E . VIT) ‘ 
- - 

Again, the ratio is much less than one and the gradients in dielectric constant can 
be neglected in the force equation also. The preceding proof is given in more 
detail in Turnbull (1967) without the steady-state restriction. 

To complete the set of equations, the equations of heat conduction and that of 
the functional dependence of the electrical conductivity on temperature are 
needed. These relations are 

DTIDt = K V ~ T ,  (10) 

= a0[l + a(T - To)],  

where K is the thermal diffusivity. 
The stability of the boundary layer will be determined by assuming pertur- 

bations from an equilibrium and by testing whether these perturbations grow or 
decay in time. The equilibrium state is assumed to consist of a temperature 
gradient in a motionless fluid, i.e. the steady flow in the vertical direction is 
neglected for this calculation. The equilibrium temperature varies from TI at the 
heated plate to To at the edge of the boundary layer. The boundary-layer thick- 
ness, 6, is assumed to be constant. In reality, however, 6 varies in the vertical 
direction. In  the equilibrium state the electrical force is balanced by the pressure. 

The system is now assumed to be perturbed from equilibrium. The perturbation 
variables are the electric potential $, charge density q’, pressure p‘, velocity v, 
temperature T’ , and electrical conductivity IT‘. The perturbation electric field is 
related to the potential by 

E’ = -V$. (12) 

(13) 

The perturbations are assumed to be of the form 

q’ = Re[G’(y) ei(wt-kzz-kzd I. 



Instability of a thermal boundary layer 235 

The perturbation variables are substituted into (1)-(6), and (lo)-( 11). These 
equations are then linearized with respect to the perturbation variables and the 
following equations result: 

(14) j@pOx = jkx @' + p(D2 - k2)ox + qjkx $, 

jupoz = jkz@' + p(D2 - k2)OZ + qjkz $, 
-jkX6% - jkaCZ + DG, = 0, 

jwij' - a(D2 - k2)$+ S'DE, - DaD$+ Eu D6' + 6, Dq = 0, 

jo!?' + 6, DT = K ( D ~  - k2)p, 

jwp6, = -D@'+p(D2-k2)Oy-qD$+E,Qh', (15) 

(16) 

(17) 

q = -e(D2-k2)$, (18) 

(19) 

(20) 

a' = goaP, (21) 

where k2 = k i  + k: and D = a/ay. 

Equations (14) to (18) combined into a single equation in OU and $ yield 

jwp(D2-k2)OU = p(D2-  k2)6,- k2eD2E,$+k%Ey(D2- k2)$. (22) 
Combining (18), (19) and (21) gives 

- (a+ jwe)  ( D 2 - k 2 ) $ - D u 0 $ + e D 2 E , ' L ? , + ~ o ~ E , D ~ ' + a o a D E u ~ '  = 0. (23) 

Since the instability predicted by (20), (22) and (23) is similar to the BBnard 
problem, approximations made in that problem will be made here. The tempera- 
ture gradients will be assumed to be small so that the gradients in electrical 
conductivity are also small. With this approximation, we may neglect $D2EE, 
compared with E,D2$, D E , p  compared with EuD?" and DUD$ compared 
with uD2$. This is similar to the 'Boussinesq approximation'. In addition, the 
principle of exchange of stabilities is assumed to hold, i.e. the system becomes 
unstable at zero frequency. 

The equations at incipience of instability (o = 0) are 

Gu DT = K(D' - P)?', 

p(D2 - k2)23u + k%EU(D2 - k2)$ = 0, 

a(D2 - k2)$ = eD2Eu6, +ano E, D!?'. 

(24) 

(25) 

(26) 

The above equations require a knowledge of the equilibrium temperature dis- 
tribution. Due to the equilibrium velocity, which we have neglected, the tem- 
perature gradient varies across the boundary layer, being largest near the plate. 
For the purposes of an approximate analysis the temperature gradient will be 
assumed uniform. This allows (24) to (26) to be combined into a single equation, 

(D2- k2)!P + k2EaE@" = 0. 
( 0 2  - k2)3p1 + k2e2Eu(D2Eu)K 

DT aDT 
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Non-dimensionalized, this equation becomes 

(D*2- k*2)3!?“ + k*2(Rx) (Er) (D*2- k*2)!?’+ k*2 Er D*!?’ = 0, (28 1 
where D* = 6D, k* = 6k, Rx = KDq/au,(T, - T,)E,, Er = aeEt(T, - T0)a2/,uK and 
6 is the boundary-layer thickness. Er is similar to the Rayleigh number, 

Ra = g(dp/dT) (Tl - T 0 ) 6 3 / ~ ~ ,  

with the electrical forces replacing the gravitational ones. Rz expresses the 
importance of convection of charge and is the electrical relaxation time divided 
by the thermal diffusion time. 

For the experiments reported in this paper, the second term in (28) is negligible 
compared to the third term. For this case, (28)  reduces to 

(D*2- k*2)3p + k*2ErD*p’ = 0. (29) 

This equation differs from that of the BBnard problem in that the second term 
has T‘ replaced by its derivative. 

To solve the exact problem for the stability of the boundary layer, the equili- 
brium velocity and effects of gravity should be added to (24) to (26). The boun- 
dary conditions are that the perturbation velocity, potential and temperature 
vanish at  the heated plate and also at  the other electrode. In addition, of course, 
the equilibrium equations would have to be solved first to determine the equili- 
brium. For the purposes of an approximate solution we will use (29) and assume, 
as did Lord Rayleigh (1916), in the BBnard problem, that a derivative in the 
y direction is of magnitude n times the quantity differentiated. That is to say, if 
the perturbations vary sinusoidally with y, a half wavelength fits within the 
boundarylayer. In  this case the minimum Eroccurs with k = n42 and is Er = 209. 
Since Er is proportional to S2, the instability will occur first where the boundary 
layer is thickest,, which is at  the tcp of the heated plate. 

4. Experiments to detect the onset of instability 
In order to evaluate the theory developed in the last section, experiments were 

performed to detect the onset of instability. The onset of instability is that point 
where waves first start to appear in the boundary layer, as in figure 2(b). The 
apparatus used is that described in the introduction. By shining a parallel light 
through the boundary layer and projecting the resulting diffraction on a screen, 
the perturbations in the boundary layer were made visible. Starting at zero, the 
voltage was raised slowly until the perturbation appeared on the screen. The 
voltage at that point was then recorded. The results of these measurements are 
shown in figure 3 for measurements taken using corn oil in a tank about 5in. 
high, 4in. across, and with a plate separation of lin. The critical electrical 
Rayleigh number Er would appear to be about 300 to 500 regardless of the heak 
flux or temperature of the heated plate. For the experiments Rx is of order 0.01 so 
that the second term in (28 )  may be neglected. Using the theory of Turnbull 
(1969) it is found that the electric field a t  the observed threshold for instability 
has altered the equilibrium boundary layer only in a region a few millimetres 
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high at  the bottom of the heated plate. Thus the value for 6used in calculating Er 
is that predicted by the theory of Squire (1938). The value of 6 used is that at the 
top of the plate where it is largest. In  figure 3, the electric Rayleigh number is 
plotted against Prandtl number with the fluid properties being taken at  the 
average temperature. The exact point of instability was hard to detect since the 
perturbations were carried out of the system by the fluid motion. If the growth 
rate were small and there were no initial disturbance, the instability would not be 
seen even though the fluid was in an unstable situation. For this reason the 

1000 

500 

Er 

50 100 200 300 400 
100 

Pr 

FIGURE 3. Electric Rayleigh number, Er, for incipient instability 
as a function of the Prandtl number, Pr. 

lower values of the measured electric Rayleigh numbers are probably the correct 
ones. The measured values are to be compared to the theoretically predicted 
value of about 200. If the effects of the boundary conditions at  the plate were fully 
taken into account, it seems likely that the predicted value would be somewhat 
greater than 200. The approximate agreement between theory and experiment 
suggests that the mechanism indicated by the theory is the actual mechanism 
for instability. That mechanism is: the electrical forces on the free charge tend 
to produce an instability; the instability is slowed by the viscosity; and the 
thermal conductivity tends to restore the fluid to its original condition. 

5. Heat transfer experiments 
If the electric field causes the boundary layer to become unstable, there would 

be a change in the heat transferred from the heated plate to the other electrode. 
The apparatus used was the same one as for the previous experiments with the 
experiments performed as follows: the voltage was set to the desired value and 
then the heater was turned on with the power into the heater held constant. After 
the initial transient was over, the temperature of the two plates was measured as 
a function of time. These measurements were used to calculate the electric 
Rayleigh number and the Nusselt number based on the height of the plate. 
Since heat was also transferred away from the side of the heated plate not facing 
the other electrode, this Nusselt number is meaningful only for comparing the 
measurements with each other. 
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The data for zero voltage and a particular heater power were assumed to 
obey the curve Nu = C,Ra* + C, where C, and C, are arbitrary constants to be 
determined by a least squares fit and Ra is the ordinary Rayleigh number. This 
curve fits all data points within 5 %, and most points within 2 yo. This form of 
curve was chosen because heat transfer in free convection is often approximately 
proportional to Rd. The data for non-zero voltages were analysed as follows: 
the Nusselt number predicted by the curve for zero voltage was subtracted from 
the value for non-zero voltage. This gives the change in heat transfer due to the 
electric field. The results are shown in figure 4 as a function of the electric Rayleigh 
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FIGURE 4. Change in Nusselt number, ANu, due to the electric 
field as a function of the electric Rayleigh number, ET. 

For small electric Rayleigh numbers, it appears that the field retards the heat 
transfer slightly. Then at an electric Rayleigh number of about 1000 to 2000 the 
heat transfer begins to increase and continues to increase with Er. The maximum 
voltage used was 10 kV. The value of Er for which the NusseIt number begins to 
increase is somewhat higher than the value for incipient instability. This indicates 
that the waves in the boundary layer do not affect the heat transfer much and that 
the rise in Nusselt number occurs due to the breakup of the boundary layer 
observed at  higher voltages. 
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6. Summary 
The electrical forces producing the instability result from the electric field 

acting on the free charge density. The source of the free charge is as follows: the 
electrical conductivity is a function of temperature and, therefore, there are 
conductivity gradients in the boundary layer. A current flows in the fluid because 
of the electric field and in order for the current to be continuous the electric field 
must be smallest where the conductivity is largest. The free charge accumulates 
in order to provide the necessary electric field distribution. 

The reason a threshold for instability exists is that the viscosity of the liquid 
opposes the tendency of the electric field to produce instability while the thermal 
conductivity acts to destroy the perturbations. Just above the threshold the 
instability occurs as waves in the boundary layer which are carried out of the 
system by the upward velocity. At a higher voltage the entire boundary layer 
becomes unstable and breaks up. Increases in heat transfer are only substant.ia1 
after the boundary layer has broken up. 

This work was supported by the National Science Foundation under grant 
GK-14624. 
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FIGURE 2. The diffraction pattern resulting from parallel light being shone through the 
boundary layer. (a )  No electric field. ( b )  Electric field large enough to produce waves in the 
boundary layer. The horizontal lines are due to perturbations in the boundary layer and 
are moving up along t,he plate. (c) Electric field large enough to destroy the bormdary 
layor. ( d )  Still larger electric field. 
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